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Abstract. Bethe ansatz equations (0x91 are-investigated for the isotropic spin-f Heisenberg 
chain as well as the,XXZ chain with real solutions characterized by identical integers in the 
logarithmic form of the BAE Such sta? do not belong to the usual classification scheme (shing 
hypothesis). They always exist in critical sectors with respect to the tow spin of thechain and 
the anisouopy.The conception of holes has to be changed in this case, because there OCCUT more 
holes than expected. The finite-sire corrections for the XXX model are calculated including 
complex roofs and the new type of Gal solutions with repeating integers. The 'tower shucture' 
predicted by the hypothesis of conformal invariance is shown to remain unchanged. 

1. Introduction 

The Heisenberg model represents a quantum-mechanical generalization of the Ising model 
which describes the spin interaction of a system. Its solution is given by the familiar Bethe 
ansatz equations (BAE) (Bethe 1931) related~to the Yang-Baxter algebra, quantum groups 

In this paper we investigate the one-dimensional spin chain with nearest-neighbour 
interaction and periodic boundary condition ( N  + 1 1). The isotropic Hamiltonian (XXX 
model) in. the. antiferromagnetic case (J t 0) can be given by a sum of Pauli matric,ices 
having the form 

and statistical physics. , 

that is he limit ( y  + 0)- of the anisotropic X X Z  model 

. .  

The solutions have to satisfy the Bethe ansatz equations 
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03054470/93/133105+16$0750 0 1993 IOP Publishing Ltd 3105 



3106 

where the parameters + o f t e n  referred to as rapidities or roo-etermine all the other 
interesting quantities as for instance theenergy 

G Jiittner and B-D Datfel 

or the momentum 

of the chain (see e.g. Faddeev and Takhtajan 1981). 

that any solution consists of a series of strings in the form 
For large N one assumes the so-called string hypothesis (Takahashi 1971) which claims 

(6) 

It is useful to take the logarithm of the algebraic BAE (3) 

Because of the logarithmic branches either a set of integers or a set of half-integers occurs 
which depends on N and r 

(8) 
N - r + l  

Q k =  - k  k = l , 2 ,  ... . 

A general assumption in the string hypothesis is a one-to-one correspondence between a 
rapidity hk and a number Q k ,  i.e. strings with the same length n should not have the same 
integers in order to count the total number of configurations by the set [el}. Despite the fact 
that there are a lot of investigations about the BAE, Vladimirov (1984) and EDler et al (1991, 
1992) found a new type of real solutions which were overlooked in recent years. E5ler and 
co-workers analysed the BAE for the two particle sector (r = 2) of the XXX model. New 
pairs of unexpected, real solutions are found to develop where the corresponding integers of 
the BA€ are identical, although their rapidities are different. Such two additional roots can 
appear, if the lattice length N is greater than a critical value N = 21.86. Furthermore, it was 
shown by graphical methods (Essler et al 1991, 1992) that this new case is connected with 
a loss of complex roots. Thus, the total number of solutions (2N) remains unchanged-in 
agreement with the assumption that all eigenstates can be given by the SU(2) extended 
Bethe ansatz (Faddeev and Takthajan 1981). But a crucially new type of real solutions is 
obtained, which is not describable by the string hypothesis. Due to the disappearence of 
complex roots, the pairs of real roots characterized by repeating integers may be considered 
as degenerate complex strings. 

In comparison to the ground state, the two-particle sector with N 2 22 (where the new 
solutions occur) belongs to the ferromagnetic sector. The normal, ‘undegenemte’ ground 
state is  determined by r = 11 magnons for the minimal critical lattice length N = 22. 
Therefore, the first motivation of this paper consists in a consideration of such states in 
the antiferromagnetic sector having more than two magnpns. An analytical or graphical 
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investigation of the BAE for calculating ail possible solutions leads to several complications 
for r > 2 or a higher number of roots. We consider only the simple real case without any 
complex root if nor stared otherwise. Indeed, we have found such a kind of real solutions 
for every number of rapidities by means of numerical iterations. They can exist in a region 
characterized by the antifemmagnetic sector. This will~be described in sections~2, 3 and 4. 

On the other hand, the new type of roots should be allowed for in the so-calledfinite-size 
corrections related to critical phenomena of XI systems with second-order phase transitions. 
Critical systems are assumed to have a conformally invariant behaviour. According to this 
hypothesis Cardy (1984, 1987) made predictions about the spectrum (conformal towers) of 
the corresponding ID quantum systems by a comparison between a finite strip and a planar 
infinite system (with the ground-state energy E ,  = A N ) ,  

n Eo = . A N  - -C 
6 N  ~ 

2 r  
N 

P -Po=- ( l+m- t i )  

where x, 1 are the scaling indices, m and ti are non-negative Entegers and c is the conformal 
charge. The  correlation^ length is known to be infinite in a critical system. It is directly 
proportional ~ to the inverse of the gap E - EO, which therefore has to a tend to zero for 
N + CO. A reverse test is possible by a comparison of the computed excitations of a 
solvable model. In section 5 we calculate the excitation spectrum of the isotropic Heisenberg 
chain. Rapidities with repeating integers are included. 

2. Characterization of real solutions for the isotropic chain 

Using the BAE (7) we can introduce the following function 

1 1 ' 1  
N n  

z(A) = - tan-'(2A) - - - tan-'(A - A,) 
I=1 n 

where the mots A, in the sum are assumed to be known. Then any root ha is determined 
by a (half-)integer Q k :  

QP = N z ( W .  (13) 

That means that the set of numbers (ema] fixes all roots [Amot]. But in the general case 
we obtain more real solutions. A hole Ahole is a solution with a number Q h  

which differs from all roots Ahale g' (Amot}. Notice that only roots are summed up in (12). 
Holes do not occur in the original algebraic form (3) of the BE and they have no direct 
relevance. Due to the asymptotic behaviour of z(A). 

( 1 3  
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Figure 1. Behaviour of NI@) for the ground state, 
A > 0, N = 40. r = 20; full circles: rw1s 

. .*-. ........................................... 
1: 1.. ..._.. ...... ./- 

F p r e  2. Behaviour of Nr(A) for a symmetrical She 
with four holes. 2 > 0, N = 40, r = 18: full circles: 
root(, opn circles: holes. 

it is supposed that the choice of Qt is restricted by maximal and minimal values 

( N z ( w )  is a half-integer if the Qk have to be integers, and vice versa, so that we must add 
-4.) The ground state (r = N/2)  is known to be characterized by real roots only. No hole 
appears in the set of roots. According to (16) we can write 

N I  
Q,,,.. = - - - 

4 2  

and the total number I of all Qt within the interval [emin, emax] is 

I=Qm,-QmiO+l=N/2 .  (18) 

Therefore, any root must correspond to a number Qt.  The correspondence is easy to see 
in figure 1 calculated by the exact (numerical) solutions. The function z(A) determining 
this relation between At and Ql: is also monotone for the lowest excitations (r c N / 2 )  (cf 
figure 2). Here the normal case is assumed with non-repeating integers. The maximum 
Qmm increases (16) so that N o  holes are found if one root is dropped (the number of roots 
r decreases by one). This behaviour is often referred to as the backflow effect. According 
to the assumed one-to-one correspondence, the number of all real solutions is equal to the 
number of integers . .  

r + h  = Qmm - Qmi. + 1 = N - r  

and the total number of holes per configuration reads 

h = N - 2r. (1% 

Since the choice of Qhote is free within the interval [emin, em,] ,  we obtain two degrees of 
freedom by dropping one root. 

We solved the BAE by numerical iterations 
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which are determined by the choice of integers Qk. In OUT investigation the series 
{A$', Ai", Ai?, .. .) is  found^ to be convergent (n -+ 00) for all arbitrarily chosen 
configurations {ex]. The starting values (A:)] were non-critical: the iterations given by 
the same quantities N ,  r and [ek}  converged to the,same solution for any A;). But a 
starting root A:'' has to be different from any other value h;'' in order to include the later 
consideration of degenerate states with repeating integers. At first we calculate the ground 
state with a lattice length N > 22 (e.g. N = 40, r = 20). Now, step by step, a root 
was dropped. The set ( Q x }  was changed within [Qmb. em,] and all possible states with 
non-repeating integers describing the real roots were computed. Because of the smooth 
bchaviour of z(A) one always obtains a convergent solution. Furthermore, a description by 
roots only is complete since the position of holes is read o f f  from z(A) (cf figure 2). In 
the normal case the resulting integers of holes differ from integers of any other hole and 
root. The function z(A) remains monotone. However, the behaviour of z begins to change 
below a certain number of roots r ( N  is fixed). This function can oscillate in the vicinity 
of the maximal or minimal mot Amarlmh if its corresponding integer is equal to Qm or 
Qmi., respectively. Although we have a non-repeating set of roots, we obtain two different, 
finite holes Ah, # A b  with the same integers Qh, = Qh, = em,. This situation is shown 
in figure 3. Now one can try to exchange such a hole (we call it 'virtual hole') by a root 
Below a critical r ,  which is in general slightly smaller than the value described above, a state 
is possible with twofrnite mots (a double root) and one virtual hole A,, #A,* # Ah having 
identical integers at Qmx = Q,, = Qh~= Qh (see figure 4). If more roots are dropped, one 
can also construct configurations where four or more integers are equal (figure 5). There 
are even solutions with repeating integers smaller than Q- (cf figure 6).  In principle, all 
imaginable degenerate states seem to be possible that have an arbitrary choice of integers for 
the roots-repeating or non-repeating on the edge-with no fegard for the accompanying 
holes. The existence of such a configuration should depend on a relation between the lattice 
length N and the number of magnons ' r .  One can introduce a critical value for r being a 
function of N and the set [ Qk} 

Lj . . .  Q.. ...................................... 15 .. Q.. ......................................... 1 .......... /+.-/-7 . .  .I. .... .A 

Figure 3. Degenerate behavioui of Nr(A) on &.edge 
for a symmetrical state with virtual holes at Qmar = 
14.5. A > 0. N =40, r = 10; full circles: roofs. open 
circles: holes. holes: 

Figure 4. Behaviour of Nz(A)  on the edge for a 
symmetrical state with a double mot at Qms = 14.5, 
A > 0, N = 40, r = 10; NI circles:~mts, open circles: 
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.............................................. 

........ j , ,  

40.L t I 
Figure 5. Behaviour of Nr(h)  for a state with 10 mts and nine virtual holes ai Qmar = 494.5. 
.I >. 0. N = 1000. r = 10; full circles: roots, open circles: holes. 

Q ,  I 

Figure 6. Behaviour of N z ( A )  for a state with two roots (three viaual holes) ai Q,, = 494.5 
and eight mts (seven virmal holes) at Q- - 1 = 4935. h 9 0, N = 1000, r = 10; full 
circles: roots, open circles: holes. 

3. Lowest 'degenerate' excitations 

The excitations of the Heisenberg chain are described by the total spin 

(22) 
N S = - - r  
2 

and by the position of the integers Q k  in the set. For the lowest excitations the holes Q h  must 
lie on the edge of the interval [Qmh, e,]. Since we are interested in 'degenerate' states 
(i.e. configurations with repeating integers) in the antiferromagnetic sector, we are looking 
for such states in the vicinity of the ground state (S = 0). The following symmetrical 
arrangement was considered with repeating integers for two mots (a double root) 
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and non-repeating integers for the remaining numbers 

(24) 
r - 1  r - 1  r - 1  

Q 3 = - -  2 Q 4 = - -  3,. . . Qr-2 = -- + 2  2 ~~ 2 2 
( N  is always even). The solutions arecalculated for r = 4,6.8, . . . where the two interesting 
roots A, and A2 tend to different rapidities (A, p Az). This is possible above a critical lattice 
length (by~virtue of (20)). Below Ncfit the parameters hl and A2 always 
converge to the same value that must be excluded because of the 'Pauli principle for specfral 
parameters A'. The relation between the critical length and'r is listed in table 1. 

and if AY # 

Table 1. Critical lattice length Ncdr for configurations with a double root at Q,, (XXX chain). 

r NW S r "It S 
10 38 9 400 820 10 
30 18 9 600 1222 11 
40 100 10 800 1622 11 
50 120 IO 1040 2022 11 

100 220 10 2000 4022 11 
200 420 10 

A nearly linear correspondence canbe seen between N andr. According to S = N / 2 - r ,  
one can change the interpretation: 'degenerate' solutions are observed above a critical spin 
S 2 SE",, which is a weak function of N .  For small lattice length we obtain (cf table 1) 

&,.it = 9 K = 1 

which corresponds to the special case r = 2 found by EBler et a1 (N,a = 22 + S = 
N/2  - 2 = 9). Of course, the numerical results are quite empirical, but above this border 
states always occur that have repeating integers with respect to the BAE of the XXX chain. 
It follows from our~results that the minimal 'degenerate' excitation is closely related to 
K =~ 1 i.e. Q, = QmW If two roots are fixed at Qm and the position of the remaining 
num,bers Qk is changed, the critical spin is changed by one in the most extreme case. Real 
solutions with repeating integers only appear, if one or two roots correspond to +QmW 

AI1 remaining roots and holes have non-repeating integers, Qk with Qm& < Qk e Qmm. 
If neither a mot at Qmi. nor at Qmar was choosen, we observed the normal, monotone 
behaviour of e(A). Nevertheless, states are found to have identical integers at Qk i Q,, 
i.e. K z 1. But the lattice length (and therefore the excitkion) must be much higher for a 
given r .  For further convenience we call them second and higher critical conditions. 

We underline that the number of real roots and (virtual) holes at the same Q k  c NZ(CO) 
must be always odd due to the limit of z(A --f co). Theref&, above a certain lattice length 
oni root and MO holes were found or swo roots and one hole appeared~by a replacement of 
some inner root to Qmr. (States with three roots belong to a higher critical region, where 
more virtual holes develop.) In the two cases the total number of holes is greater than the 
expected value given by (19): 

h = N - 2r f 2 .  

But the number of holes varies, although N and r are ked. Namely, if a mot corresponds 
to Qmin, one obtains two further virtual holes at Qmh 

h = N - 2r +4. 
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If no root is fixed at Q,i, or Q,-, no virtual hole appears in the first critical region: 

G Juttner and B-D Dorfel 

h = N - 2r. 

Thus, the usual description of the spin S by holes (S = h / 2 )  becomes unsuitable. We notice 
that the number of virtual holes is determined by the set of quantum numbers Q k .  They 
are always connected with a root on the edge: in this respect a virtual hole has no degrees 
of freedom. 

Excitations lying in the antiferromagnetic part of the spectrum are characterized by the 
magnetization U = 2 S / N .  Therefore, the behaviour of S ~ l  in the thermodynamical limit 
N + 00 is essential for the existence of ‘degenerate’ solutions at zero magnetization. Our 
numerical results base on lattice length up to N = 4000. (The iteration time increases 
nearly as N’.) But unfoltunately one cannot yet decide (see table 1) if S ~ t  converges 
for N + m. However, for a finite system there should always occur finite ‘degenerate’ 
configurations with respect to S. Also, there are indications that Scdt remains finite also in 
the thermodynamical limit This will be discussed in the next section by means of the XXZ 
model. 

4. ‘Degenerate’ solutions in the XXZ case 

The logarithmic Bethe ansatz equations for the anisotropic XXZ Hamiltonian (2) read 

@(U, y )  = 2tan-’(coty tanh U). (26) 

The quantum numbers have the same form as for the isotropic chain (8); one should expect a 
similar picture for roots with identical integers. The isotropic model is assumed to possess 
quantum numbers Qk with the restriction I Qk I C  Q ,  = Nz(w) following from (16). 
Woynarovich (1987b) pointed out that for the XXZ model configurations exist where the 
largest root lies above Q,. In contrast to the BAE of the XXX model, the asymptotic value 
Q ,  is a function of a further quantity @)-the anisotropy y :  

@(U + m, y )  = x - 2y - 2e-*” sin2y. (28) 

When y increases, the asymptotic quantity Q ,  decreases. Above a certain value of y / r  
(which in general is assumed to be a rational number), 

the quantum number Q- (k = 1 according to (8)) may be larger than Q,. But the number 
of real roots and holes at Qk > Q ,  has to be even. Thus, an additional solution-a virtual 
hole-appears automatically. Such a hole must exist for any latfice length. It is natural to 
assume that this virtual hole can be exchanged by a root to form a double root. Considering 
the region 0 < y c x/Z,  this is indeed possible for any S 2 2. We have investigated 
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Table 2. Ground state (S = 0) for N = 40 and p = n/u = 5.4 (XXZ Chain). 

V, Q. = N z ( G  
f0.606755901302896583 f9.5ooMM0WWW0000 
10.396598144013574294 18 .5~0000W000178  
10.299655393171647300 17.50000000000WW00 
f0.234727721750800117 f6.500000000000WWO 
f0.18486612141 I4491 19 f5.50WWMMOOOWWO 
f0.143529569162347187 14.500000oooOOOW178 
10,107452328886095738 f3.50000OWWOOW089 
10.074722254955326362 f2.49999999999999911 
f0.044073674532395205 ~ f1.49999999999999845 
f0.014569363462498965 10.49999999999999878 

numerically the configuration (23). (24) with double roots as a function of K,  S, N and p 
with 

j? 
p = -. 

Y 

'Degenerate' solutions with double mots occur in certain sectors (cf figure 7 and tables 2-51 
characterized by an upper and lower'boundary 

s z ( p ,  K) > & i t  > Gy(P, K, N I .  (31) 

Table 3. Non-degenerate state S = 4 for N = 40 and p = zlu = 5.4 (XUZ chain). 

vo e, = NZ(U,)  

11.82890675122078505 ~11.5000000000000018 
f0.215047990705406061 16.49999999999999911 
fO.172015337712539129 f5.500000W000W0178 
fO.l348567432774l2650 14 .50~00000WW00 
f0.101598780361121674 ~.5000~00000000089 
f0.07094027541 I8283 I9 12.5000WW000000089 
f0.041945834664691283 H.49999999999999822 
10.013882035951251082 10.5OWWWWOWW56 

Table 4. Degenerate state S = 4 for N = 40 and p = r/y = 5.4 (XXZ chain) with double 
mots at Q, = 111.5 ( K  = I). 

U, Q. = N z ( d  

11.42195906926414151 *I 1.5000000000ww18 
10.985063239227702+7 f11.4999999999999982 
f0.168080412047442534 15.50oooOoooO0000000 
f0.132096913921924575 f4.50WWOWOOWWW 
10.099687777'2577677568 f3.49999999999999822 
f0.0696&16493321906513 12.5000000WW000044 
~0.0412321201403934370 ~ f1.500~00wW0OO044 
~0.0136503725018138M9 fO.5OoooDOWWOOO144 
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Table 5. Degenerate state S = 4 for N = 40 and p = n/y = 2.502 (XXZ chain) with double 
rwfs at Q.. = f10.5 (K = 2). 

U" Q. = N z ( G  

f2.77987702595788111 ~10.50W0000W000000 
f2.03213368763034330 110.50~ww0000000 
f0.383052118709249378 ~ ~.50000000000000000 
10.299104233659576613 14.50000000000000089 
10.224746549375348881 f3.5000000wO0000044 
f0. 156657638804917620 f2,4999999¶9¶99¶¶956 
f0.0925328158825032415 ~1.500000000W000089 
f0.0306088102765425078 ~0.50oW000000000067 

Table 6. Degenerate state S = IO for N = 40 (XXX chain) with double roofs at Q, = f14.5 
(K = I). 

*3.16367780276306787 f 14.5000000000030980 
f2.46033396426744799 114.4999999999970335 
f0.108529417879171780 H.5000000000000M66 
*O.O644327I94673698W ~f1.500wO0~00000133 
M.0213657224561165510 f0.500~00000~00~~ 

, 
10 20 ~ , 3 0  40 P 

Figure 7. Critical spin sectors ( X X Z )  for double roofs and K = 1.. . . ,4 according to the 
configuration (23) as a function of p = n / y  for (N = 100). 

If the sector K overlaps with the sector K i- 1 then double roots are possible both at QK 
and QK+i.  The upper limit 

(32) 

is a linear function only of p (i.e. y): this is easy to understand. If we assume a symmetrical 
state where the largest root at Q, is also much largerthan all the remaining roots, U, >> up,,, 
we can split the BA€ into two (nearly) independent systems of equations: 

max - ~~ &fit - K ' p - 1 
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2 4  :I,;\ , , , , , , , ,  

?? 

20 ~. 

18 

16 

.~ 

90 100 150 200 ?50 300 N 

.~ 
Figure 8. Critical maximum of p = z / y  for ih6 secto! at S =, 8 andK = 1 according to the 
configuration (23) as a function of N. 

Using the asymptotic of'(26), we obtain an estimate for the largest root: 
1 N sin y - (N/2 - S - 2)sin2y 

u - -In 
2 7 f K  - ( S f  1)Y (35) 

Now ~~tends to inf in i tyfory  3 X K / ( S + I ) .  ForO<x~/ (S+ l ) -y  <( 1,theIargestroot 
is finite but it influences the reduced system (34) only very weakly. This system should 
obviously possess all non-degenerate configurations, in particular a root with a quantum 
number at Q,. Therefore, the original system having hvo roots at Qx becomes degenerate 
in a natural way with equation (32) as an upper restriction. Decreasing now the spin 
with respect to (32) at fixed p .  the largest root U, decreases too-up to a point where the 
difference v,, - v, of the two members of the double root vanishes (lower boundary Szy). 
One can expand the BAE for r = 2 around this critical value i, with U,,,, = ij i 6: 

1 
@(t*6,y/2)  --0(f26,y). Q, 1 _ = _  

N 2n 2xN 
The condition for 0 < 6 < 1 reads 

< 2cosy 

which corresponds in the isotropic limit (y -+ 0) and with (23) to 

H ( K  + 4) 
N 

1 > N COS' -~= NsinZ 
N 

(37) 

(39) 

given by EBler er a1 (1991, 1992). By virtue of S = N/2 - 2, the relation (38) can be 
rewritten as 

(:;; sinx + 2 S + 4  - 2K 1. yua = f(S) = arccos - 

According to (M), we find for any S 2 a critical anisotropy with y i n/2 and, vice 
versa; for any fixed y we obtain 'degenerate' solutions described by a spin S > G. 
Although this is exact only for r = 2 (and for arbitrary N), there is a good agreement with 
the numerical results for r > 2 and small lattice length (N e 100). Thus according to (40). 
the general behaviour of the lower critical limit should be Szf  - f - ' ( y ) .  In the isotropic 
limit ( x / y  = p -+ m) and for fixed N ,  the upper critical boundary (32) tends to infinity 
and the lower one to a finite value, as is found for the XXX chain in the previous sections. 
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Due to the estimate (3.5). the quantity is independent of N in opposition to SZ:. 
But the critical sectors do not vanish in the thermodynamical limit N + CO (that means 
Sm?x - S”” dl z 0) since we can always find a certain y which ensures the estimate (35) with 
U,, - vx2 >> 1. In figure 8 the maximum of pefir = f (S, N )  is shown for S = 8, K = 1 
as a function of N having a finite asymptotic value pcfil(N + CO) = 17.0 f 0.5, which is 
indeed larger than the minimal value p g y  = (Si- IJ/K = 9 determined by (32). Similar 
relations should hold for all S 2 2. In the thermodynamical limit we can assume therefore 
non-vanishing critical sectors. For any finite p critical sectors are found with finite spins, 
i.e. ‘degenerate’ states with a zero magnetization. In the XXX case (where p tends to 
infinity), this remains unclear. After taking the limit N + CO, the relation Szy - Sc% > 0 
does not imply that S$ is finite because S C y  tends to infinity too for p + CO. However, 
we can choose a number 1 << n/y = p e CO which is arbitrarily close to the infinite 
isotropic chain so as to obtain ‘degenerate’ states with a finite spin. 

cnt 

5. Finite-size corrections 

The finite-size corrections to the eigenvalues of a transfer mahix were shown (Cardy 1987, 
Domb and Green 1976) to depend on the scaling indices and the conformal anomaly of 
a system with second-order phase transitions (a so-called critical system). A check of the 
validity of (9HI1). which are based on the conformal invariance, consists in a calculation 
of excitations for a solvable model determined by BAE. Several methods were used to obtain 
analytic corrections. Nevertheless, the first uniform consideration for calculating all lowest- 
lying excitations of a critical system was developed by Woynarovich and Eckle (1987), who 
applied the Euler-MacLaurin formula and the Wiener-Hopf integration in the BAE of the 
anisotropic XXZ model. The authors replace the sum in the BAE (7) by the Euler-MacLaurin 
formula 

h4 
4! 

- B ~ -  ( f3)(n + nh) - f‘”) - . . 

where Bk are the Bemoulli numbers. We treat the spin chain (including the ‘degenerate’ 
solutions) without any magnetic field. The presence of an extemal magnetic field leads to 
complications in the analytical estimations since general values of a non-zero magnetization 
are connected with non-conformal finite-size effects (Woynarovich et a1 1989). Though 
the behaviour of ‘degenerate’ solutions is clear for the infinite anisotropic chain only, the 
isotropic case will be investigated at first because it is easier to treat than the XXZ chain: 
however, the principal way does not differ from the XXZ case. 

It is useful to consider the derivative of z(A) 
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representing the root density. By sqbstituting h = 1/N, n = z and 

' (45) Qk a + k h = -  
N 

the equations (41) and (42) are rewritten as 

We point out therefore that due to (47) thez-function (12) has to be monotone. All solutions 
(roots as well as holes) must lie within the interval [QA-, e h + ]  with QA* cf A*. Hence, 
there are two possibilities to convert the sum over roots (7) to an integral. Either one splits 
up the holes 

considering the full interval [em;". Q-1. or one takes into account only roors within 
[ Q A - ,  Q A + ]  C [emin, em..], where holes are not permitted. That m-s that the holes lie 
on the edge of the set [ Qk] .  and the remaining mots out of [QA- , QA+] must be computed by 
an additional term. The first version was used by Woynarovich (1987b). Many difficulties 
appear, however, if the function z(A) begins to oscillate and virtual holes occur. We prefer 
the second point of view, where z(A) may be monotone, provided that the choosen interval 
[QA- ,  Q A + ]  does not possess repeating integers. Outside it, a non-monotone behaviour is 
allowed with some repeating or non-repeating quantum numbers for roots. Holes ire of no 
interest. Hence, we obtain from (7) &d (46) 

The number r* denotes the roots out of [ e h - ,  QA+]. As a normalization condition, the 
equation 

is given. If we assume that for large N the roots A* behave Iike &In  N ,  we can write 
(A > A+ >> A-) 

which is a special form of a Wiener-Hopf integral equation (Fenyo and Stolle 1983): 

x ( s )  - l+m P(S - t ) x ( O &  = f(s). (53) 
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This equation was solved by some authors (Woynarovich and Eckle 1987, Hamer etal 1987). 
One can factorize the Fourier-transformed kernel into two continuous functions &(U) which 
are holomorphic in the lower and upper halves of the complex plane, respectively. 

G Jlittner and B-D Diirfel 

Then the general solution in the o-space reads 

For a proof see e.g. Kmwski (1988). The factorizations for the isotropic Heisenberg model 
are fairly complicated 

do' In(1 + e-l"l) 
27ri w - w' T io (56) 

(57) 

and it seems to be almost impossible to calculate analytically a solution for c7,&.). There 
are two points: the correction R in (41) is treatable up to the second order in h. Fortunately 
that restriction is sufficient for computing the first order of finite-size corrections (Karowski 
1988). Furthermore, the rapidities of roots or holes respectively which are treated separately 
are unknown and they are only implicitly determined by (51). Yet Woynarovich and Eckle 
succeeded in describing the lowest excitations by also replacing the sum in the energy 
formula (4) by the Euler-MacLaurin equation in the same way. All unknown and untreatable 
terms cancel. We deal with the BAE of the XXX model with exactly the same methods 
introduced for the XXZ spin chain in the paper of Woynarovich (1987a. 1987b). although 
with one exception that is described above in order to include repeating quantum numbers. 
For real magnons we obtain (cf Jittner 1992) a formula for the gap between the finite and 
the infinite system which holds both for the XXX and XXZ chain. 

,'I n2 Q, - QA+ - 1/2)* + ( QA- - Q-, - lj2 E N  - E ,  = - [( 
2N i(0) i(0) 

+- --++++M- 
:2 ) 

I* r*(r* + 1) +*=rtx(Q:-Q~*)- , 

k=1 

Equation (57) gives one the constant i(0) which is the limit y + 0 of the general 
factorization for the X X Z  model (cf Hamer et al 1987) 

i(0) = &Fm. (60) 

Defining now an integral number A playing the role of the asymmetry with respect to the 
set (Qd. 

- QA+ - r+ - ~ QA- - Q-, - r -  A =  
2 2 
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the finite-size conections read 

3119 

(63) 

Note that the dispersion relation (62). (63) (which corresponds to c = 1) is also valid for 
repeating quantum numbers Q x .  The excitations (62) can be easily fitted into the conformal 
scheme (9), (10) with scaling indices of Gaussian form: 

2 z  
N 

P ~ J  - P, = -n(S + A) f -(-SA - M++ M-). 

In the non-degenerate case a redefinition of S, A and-M* is possible and one obtains the 
same numbers used in the preprint of Woynarovich (1987b). We also took into consideration 
complex roots. There is another determination of S, A and M” because of the necessary 
distinction of complex roots in to so-called close and wide pairs (I Imht I <  1 or I Imhx I> 1, 
respectively). ~ Woynarovich included a real mot with an integer greater than Q, by an 
additional calculation of a complex mot with an imaginary part tending to zero. But in the 
limit, the function z(h) oscillates. It was therefore useful to investigate real roots separately. 
However, in principle neither the dispersion relation nor the complex mots are changed by 
the new type of real solutions. 

6. Conclusions 

Real solutions with identical quantum numbers in the logarithmic form of the Bethe ansatz 
equations for the spin-; Heisenberg chain appear in excitated states, as compared with the 
antiferromagnetic ground state which can be characterized by the total spin S of the chain. 
The spin of configurations with double mots (i.e. two roots have the same integer) was 
found to lie in critical sectors that are functions of the anisotmpy y and the position of 
the quantum number of the double root described by K .  The remaining mots as well as 
the lattice length depend on it only slightly. Furthermore, in the thermodynamical limit 
(infinite lattice length), the critical spin may be finite, which implies zero magnetization. 
However, the structure of the finite-size corrections is not influenced by the appearance of 
such solutions. 

Since we do not take complex roots into consideration (with respect to the existence of 
‘degenerate’ solutions), we are not able to give an answer about a possible disappearance 
of complex solutions and about their relation to the new real roots. Thus the total number 
of all real and complex configurations determined by N and r is unclear. It is generally 
believed, however, that the Bethe ansatz solutions for the XXX model are complete. 

Though the real rapidities with identical integers are not distinguishable from a ‘normal’ 
real root with respect to the algebraic Bm-where the integers do not occur-they are said 
to be ‘degenerate’ solutions with respect to the logarithmic Bm. The number of holes is 
shown to depend on the set (et) and it is not fixed by the spin. Therefore, the usual 
c\assification of the spin by the number of holes meets difficulties. 
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